

QFR for the revascularization of non-culprit lesions of older patients with myocardial infarction Insights from the FIRE trial

Andrea Erriquez

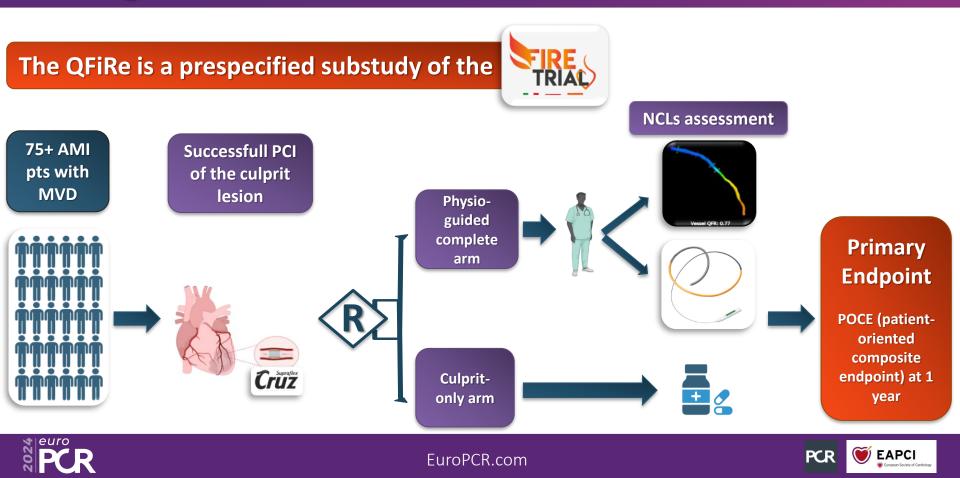
Ferrara University Hospital, Italy

on behalf of the FIRE trial investigators

https://elementrials.org

Potential conflicts of interest

Speaker's name : Andrea Erriquez


☑ I do not have any potential conflict of interest to declare

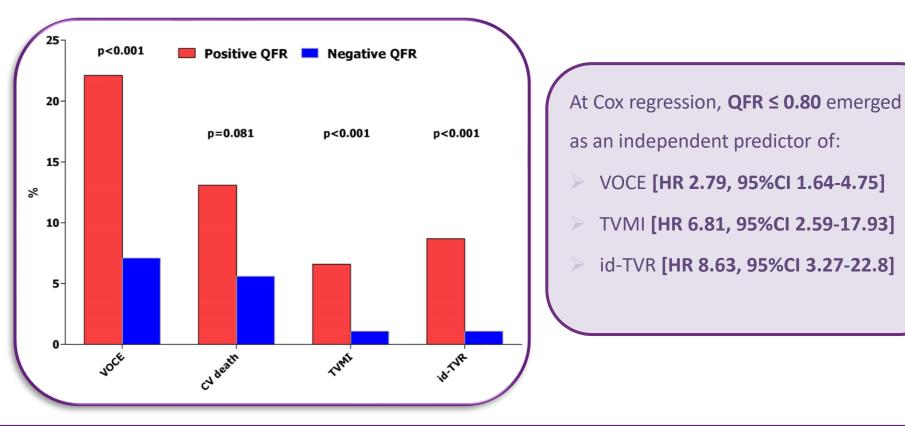
Background

Prospective validation of the prognostic role of QFR value in the discrimination of NCLs associated with adverse events

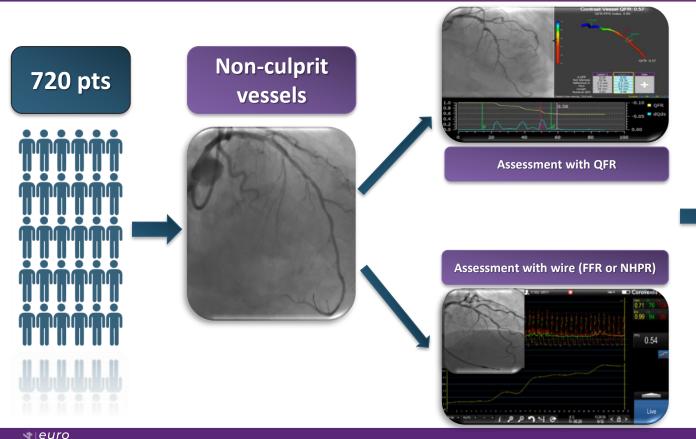
Assessment of the non-inferiority of a QFR-guidance for the treatment of NCLs vs wire-based evaluation

Culprit-only arm

VOCE (vessel-oriented composite endpoint) at 1 year: composite of cardiac death, target-vessel MI or ischemia-driven TVR


	Patients (n = 725)		
Characteristics	Negative QFR (n=366)	Positive QFR (n=319)	р
Age – years	81.4±5	80.6±5	0.030
Female sex – no. (%)	143 (39.1)	113 (35.4%)	0.365
Diabetes	114 (31.1)	112 (35.1%)	0.308
Prior PCI	70 (19.1)	58 (18.2%)	0.828
eGFR <60 ml/min	208 (56.8)	196 (61.4%)	0.252
PAD	58 (15.8)	62 (19.4%)	0.258
STEMI – no. (%)	118 (32.2)	123 (38.6%)	0.100
NSTEMI – no. (%)	248 (67.8)	196 (61.4%)	
LVEF – %	49±11	49±11	0.612
Culprit vessel – no. (%)			
Left anterior descending artery	190 (51.9)	121 (37.9)	< 0.001

	NC Vessels (n = 951)		
Analysis – no. (%)	903 (94.9%)		
Characteristics	Negative QFR (n=537)	Positive QFR (n=366)	р
Non-culprit vessels			
Left anterior descending artery	124 (23.2)	154 (42.2)	<0.001
Reference vessel diameter, mm	2.8 [2.4-3.3]	2.8 [2.4-3.2]	0.256
Diameter stenosis, (%)	60±15	70±16	<0.001
Lesion length – mm	10 [7-16]	14.1 [9.7-22.4]	<0.001
QFR Value	0.90 [0.87-0.93]	0.70 [0.60-0.80]	<0.001

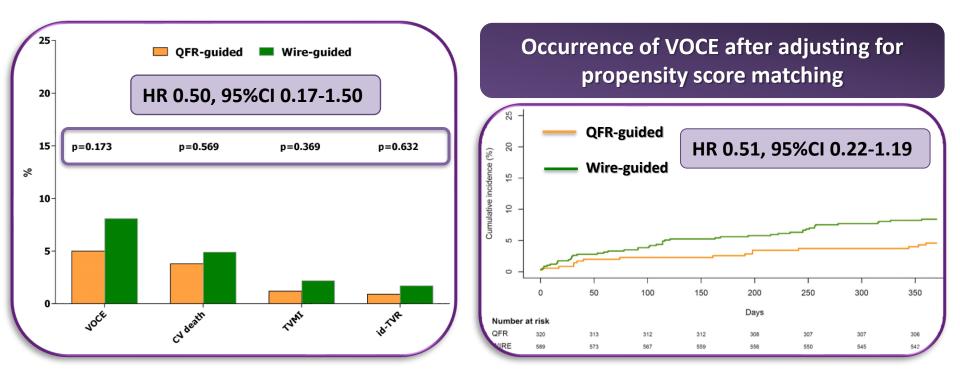

Outcomes

Physiology-guided complete arm

Primary Endpoint

VOCE (vessel-oriented composite endpoint) at 1 year: composite of cardiac death, target-vessel MI or ischemia-driven TVR

Patients and vessels characteristics


	Patients (n = 720)		
Characteristics	Wire-guided (n=451)	QFR-guided (n=249)	р
Age – years	81±4	81±4	0.993
Female sex – no. (%)	173 (38.4)	84 (33.7)	0.257
Diabetes	144 (31.9)	81 (32.5)	0.937
Prior PCI	74 (16.4)	45 (18.1)	0.648
eGFR <60 ml/min	289 (64.1)	142 (57)	0.079
PAD	66 (14.6)	53 (21.3)	0.033
STEMI – no. (%)	155 (34.4)	86 (34.5)	1
NSTEMI – no. (%)	296 (65.6)	163 (65.5)	1
Culprit vessel – no. (%)			
Left anterior descending artery	207 (45.9)	114 (45.8)	0.094

	NCLs vessels (n = 948)		
Characteristic	Wire-guided (n=589)	QFR-guided (n=320)	р
Non-culprit vessels			
Left anterior descending artery	179 (30.4)	103 (32.3)	0.004
Reference vessel diameter, mm	2.8 [2.5-3.3]	2.8 [2.4-3.3]	0.069
Diameter stenosis, (%)	68±29	65±15	0.076
Lesion length – mm	14.3 [10-21.7]	12 [8-19.5]	0.004
QFR Value		0.80 [0.70-0.90]	
Positive QFR (≤0.80), no.		129 (40.3)	
Vessels investigated with FFR, no.	451 (76.6)		
FFR Value	0.80 [0.70-0.90]		
Positive FFR (≤0.80), no.	230 (51)		
Vessels investigated with NHPI, no.	138 (23.4)		
NHPI, mean value	0.90 [0.81-0.99]		
Positive NHPI (≤0.89), no.	67 (48.6)		
Positive wire-based, no.	297 (50.4)		

Outcomes

QFR ≤0.80 effectively identifies NCLs at a higher risk of adverse events

QFR value ≤0.80 stands out as an independent predictor of VOCE

QFR-guided PCI of NCLs is comparable to wire-based physiology

These results should be considered preliminary and hypothesis-generating

Available on JACC CVI

ARTICLE IN PRESS

VOL. ■, NO. ■, 2024

JACC: CARDIOVASCULAR INTERVENTIONS ^a 202 4 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE (http://creative.commons.org/licenses/by/4.0/).

ORIGINAL RESEARCH

QFR for the Revascularization of Nonculprit Vessels in MI Patients

Insights From the FIRE Trial

Andrea Erriquez, MD,^a Gianluca Campo, MD,^a Vincenzo Guiducci, MD,^b Gianni Casella, MD,^c Mila Menozzi, MD,^d Enrico Cerrato, MD, PHD,^{e,f} Giorgio Sacchetta, MD,^g Raul Moreno, MD,^b Marco Arena, MD,ⁱ Ignacio Amat Santos, MD,ⁱ Jose Luis Diez Gil, MD,^k Roberto Scarsini, MD,¹ Marco Ruozzi, MD,^m Manfredi Arioti, MD,^a Andrea Picchi, MD,^o Marco Barbierato, MD,^g Elisabetta Moscarella, MD,^g Sergio Musto D'Amore, MD,^b Valerio Lanzilotti, MD,^c

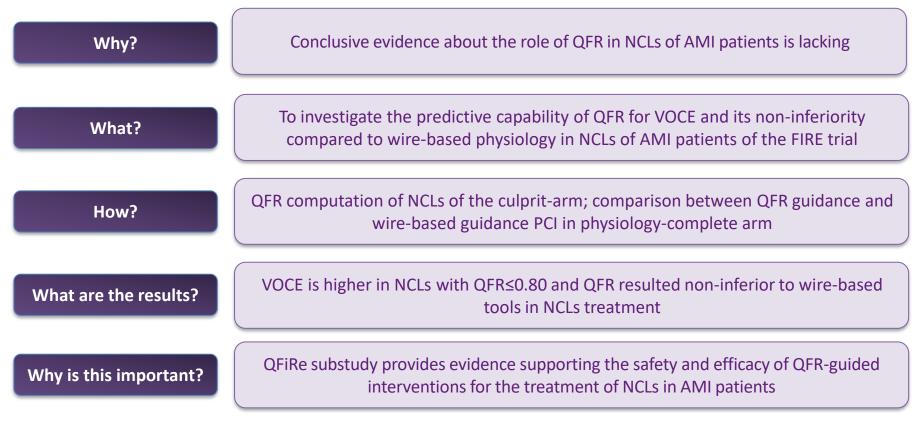
Caterina Cavazza, MD,^d Marco Rezzaghi, MD,^b Marta Cocco, MD,^a Andrea Marrone, MD,^a Filippo Maria Verardi, MD,^a Javier Escaned, MD,^r Emanuele Barbato, MD,^s Iginio Colaiori, MD,^t Nicola Pesenti, STAT,^a Greta Carrara, STAT,^a Simone Biscaglia, MD^a

ABSTRACT

BACKGROUND The role of quantitative flow ratio (QFR) in the treatment of nonculprit vessels of patients with myocardial infarction (MI) is a topic of ongoing discussion.

OBJECTIVES This study aimed to investigate the predictive capability of QFR for adverse events and its noninferiority compared to wire-based functional assessment in nonculprit vessels of MI patients.

METHODS The FIRE (Functional Assessment in Elderly MI Patients With Multivessel Disease) trial randomized 1,445 older MI patients to culprit-only (n ¼ 725) or physiology-guided complete revascularization (n ¼ 720). In the culprit-only arm, angiographic projections of nonculprit vessels were prospectively collected, centrally reviewed for QFR computation, and associated with endpoints. In the complete revascularization arm, endpoints were compared between nonculprit vessels investigated with QFR or wire-based functional assessment. The primary endpoint was the vessel-oriented composite endpoint (VOCE) at 1 year.


RESULTS QFR was measured on 903 nonculprit vessels from 685 patients in the culprit-only arm. Overall, 366 (40.5%) nonculprit vessels showed a QFR value #0.80, with a significantly higher incidence of VOCEs (22.1% vs 7.1%; P < 0.001). QFR #0.80 emerged as an independent predictor of VOCEs (HR: 2.79; 95% CI: 1.64-4.75). In the complete arm, QFR was used in 320 (35.2%) nonculprit vessels to guide revascularization. When compared with propensity-matched nonculprit vessels in which treatment was guided by wire-based functional assessment, no significant difference was observed (HR: 0.57; 95% CI: 0.28-1.15) in VOCEs.

CONCLUSIONS This prespecified subanalysis of the FIRE trial provides evidence supporting the safety and efficacy of QFR-guided interventions for the treatment of nonculprit vessels in MI patients. (Functional Assessment in Elderly MI Patients With Multivessel Disease [FIRE]; NCT03772743) (J Am Coll Cardiol Intv 2024; =:=-=) © 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The essentials to remember

