

Functional versus Culprit-only Revascularization in Elderly Patients with Myocardial Infarction and Multivessel Disease

The FIRE trial

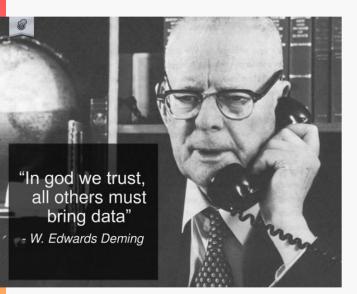
on behalf of the FIRE trial Investigators

- The COMPLETE trial showed the benefit of complete revascularization in younger STEMI patients
- Older patients (75+) were poorly represented in RCTs investigating the benefit of complete revascularization
- The risk of periprocedural complications is higher and prognostically impactful in older patients

Why FIRE was necessary ?!?

- Around 62 years old
- First event
- Low anatomic complexity
- NCL not on LAD

Patient at low risk, where a complete


revascularization, which is safely performed, reduces

long-term recurrence of MI and CV death

	COMPLETE N=4041	Compare-Acute N=885	CvLPRIT N=296	DANAMI-3- PRIMULTI N=627	Politi et al. N=214	PRAMI N=465
Pts.	2025/2016	590/295	146/150	313/314	84/130	234/231
Age, years	62±11	61±10	65±12	63±10	64±11	62±10
NCL (location) %						
LM	0.4	0	0	0	NA	NA
Proximal LAD	10.1	12.2	15.4	25.0	NA	26.2
Syntax score (baseline)	16.1	NA	NA	NA	NA	NA
Syntax score NCL	3.8	NA	NA	NA	NA	NA
1 year Mortality	1.7	1.5	2.8	4.5	11.2	13.6

Why FIRE was necessary ?!?

Variable	PRAMI	CvLPRIT	DANAMI-3- PRIMULTI	Compare-Acute	COMPLETE
No. of patients	465	296	627	885	4041
Mean age — yr	62	65	63	61	62
Male sex — %	78	81	81	77	80

Should the results of the COMPLETE trial, in combination with the results of previous randomized trials, change the guidelines to support complete revascularization in all patients with STEMI and multivessel disease? Patients participating in trials are different from sicker patients seen in the clinical setting, and extrapolation of the results to patients with a greater risk of complications may not be safe.

Myocardial infarction	20/231	4/146	16/313	28/590	160/2025
Revascularization	46/231	16/146	52/313	103/590	160/2025
Events with complete revascularization vs. treatment of culprit lesion only — hazard ratio (95% CI)					
Cardiovascular death or myocardial infarction	0.36 (0.18–0.73)	NA	0.80 (0.45–1.45)	NA	0.74 (0.60–0.91)
Death	NA	0.38 (0.12–1.20)	1.40 (0.63–3.00)	0.80 (0.25–2.56)	0.91 (0.69–1.20)

To investigate whether, in older patients (75+ years) with MI and multivessel disease, complete revascularization based on coronary physiology is superior to a culprit-only revascularization strategy

Organization

3 countries: Italy, Spain, Poland

34 centers

Study PI: Simone Biscaglia

Study Chair: Gianluca Campo

Executive Committee: Javier Escaned, Dariusz Dudek, Raul Moreno, Matteo Tebaldi, Emanuele Barbato

CEC: Rita Pavasini, Paolo Cimaglia CRC: Veronica Lodolini, Martina Viola Stats: Elisa Maietti, Anna Zanetti, Nicola Pesenti CROs: AdvicePharma, Impulsae Consulting, KCRI

Investigator-driven trial

Università degli Studi di Ferrara

Contributors

SmT

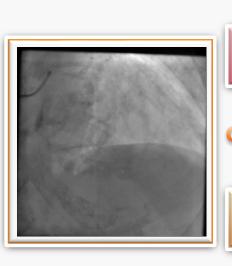
All comers, prospective, randomized, multicenter, open-label trial with blinded adjudicated evaluation of outcomes (PROBE).

Pts \geq 75 ys hospitalized for MI (STE or NSTE) with indication to invasive management

Multivessel disease at coronary artery angiography

Physiology-guided Complete Revascularization Culprit-only Revascularization

1-, 3-, and 5-year follow-up


We estimated a conservative 15% rate of the primary endpoint at 1 year in the culprit-only strategy group. Considering that functional assessment should reduce the primary endpoint of at least 30%, 1368 patients are required to have a 80% chance of detecting, as significant at the 5% level, a 30% difference in the primary outcome between the two groups

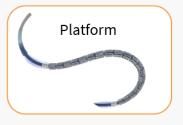
Physiology & Stents

- Non-culprit lesions were assessed with either wire-based FFR, resting index or angiography-derived FFR
- Flow-limiting lesions (FFR≤0.80, resting ≤0.89) had to be revascularized with biodegradable-polymer sirolimus ultra-thin stent(s)

Key role of Physiology

- Gatekeeper for indicated procedures
- Less stents
- Less complications
- Maximal benefit in flow-limiting lesions

Key role of Supraflez Cruz


TRIAL

- Deliverability
- Safety with short DAPT regimen
- Few stent thrombosis
- Few instent restenosis

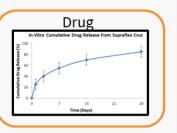
Characteristics

Stent Material: Co – Cr L605 with LDZ Connectors (Long Dual Z-Link) and unique design to improve deliverability

 Strut Thickness:
 60 μm across all stent diameters (2.00 to 4.50 mm)

 Radial Strength:
 1093 mmHg

 Foreshortening:
 0 % foreshortening (4mm Supraflex Cruz overexpanded to 5.5mm)¹


 Long Dual 'Z' Link":
 Long connectors enhance the overall radial strength, Improves flexibility, Resists longitudinal compression

Drug Carrier(Polymers)

Biodegradable Polymer Matrix: Poly-L Lactide (PLLA), Poly L-Lactide-co-Caprolactone (PLCL), Polyvinylpyrrolidone (PVP). A top protective layer (Without Drug). Middle layer (Drug + Polymers) Base layer (Drug + Polymers).

Coating: Circumferential, Average thickness: 4 to 6 µm

Sirolimus: 1.4 µg/mm²

Release Profile :

- About 80% of the drug is released at 4 weeks in biological media while 100% drug is released at a slow rate within 3 months.
- The initial moderate level of Sirolimus drug release from middle layer coating helps to inhibit early phase of neointimal hyperplasia.
- Controlled drug release kinetics from base layer coating is beneficial to maintain the effective amount of drug level in the arterial tissues which are required to prevent smooth muscle cell proliferation.

LDZ link to zip through complex lesion

Alternate LDZ link orientation to handle any curve or tortuosity

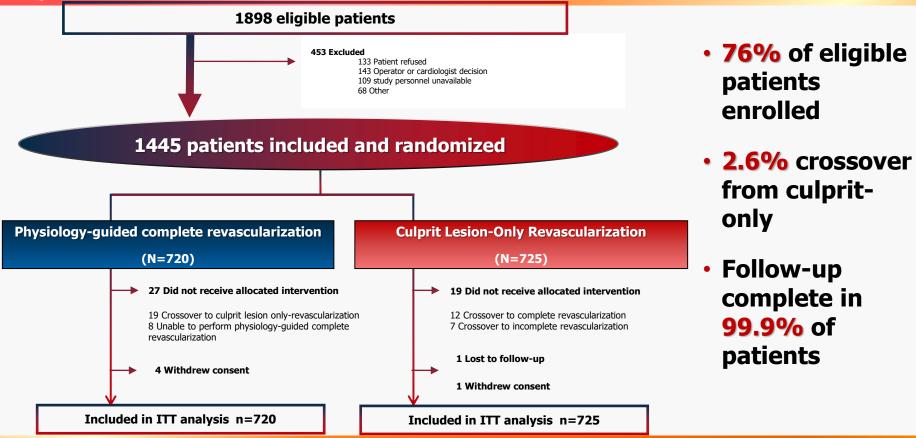
In phase design to provide agility

Primary

Death, any MI, any stroke, or ID-revascularization

Key secondary

Cardiovascular death or MI

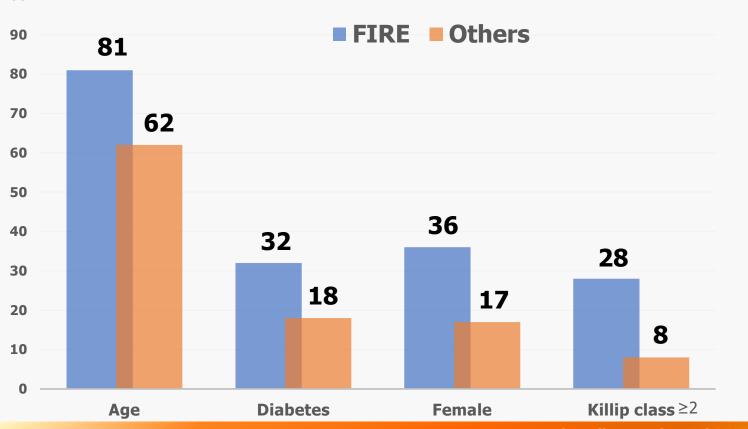


CA-AKI, stroke, or BARC type 3-5 bleeding

Flow-Chart

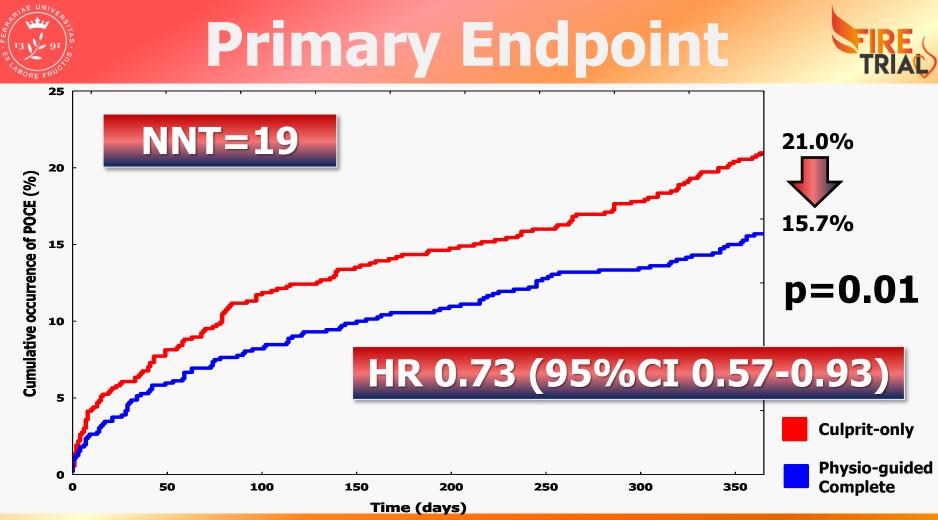
Baseline Characteristics

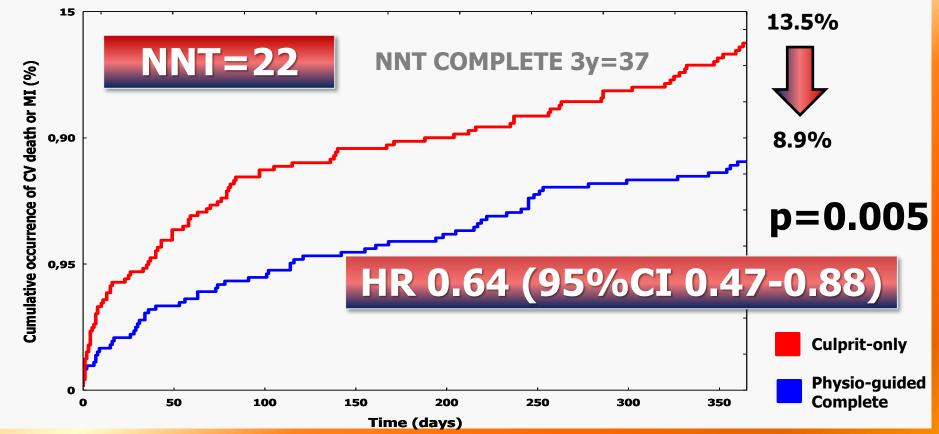
Characteristic	Culprit-Only (N=725)	Physiology-Guided Complete (N=720)				
Age (IQR) – yr	80 (77-84)	81 (77-84)				
Female sex	265 (36.6)	263 (36.5)				
Comorbidities						
Hypertension	592 (81.7)	593 (82.4)				
Diabetes	233 (32.1)	230 (31.9)				
Prior MI	116 (16)	104 (14.4)				
eGFR <60 ml/min	332 (45.8)	330 (45.8)				
PAD	127 (17.5)	122 (16.9)				
Clinical presentation						
STEMI	256 (35.3)	253 (35.1)				
NSTEMI	469 (64.7)	467 (64.9)				


Characteristic	Culprit-Only (N=725)	Physiology-Guided Complete (N=720)	
Killip class ≥2	208 (28.7)	204 (28.3)	
Hospital LOS	5 (3-7)	6 (4-8)	
Medication at discha	rge		
Aspirin	683 (94.2)	692 (96.1)	
Clopidogrel	358 (49.4)	371 (51.5)	
Ticagrelor	337 (46.5)	326 (45.3)	
Prasugrel	16 (2.2)	16 (2.2)	
Vitamin K antagonist	36 (5)	27 (3.8)	
NOAC	129 (17.8)	137 (19)	
ACEi or ARB	552 (76.1)	556 (77.2)	
Statin	661 (91.2)	680 (94.4)	

100

Baseline Characteristics




Procedural Characteristics

Characteristic	Culprit-Only (n=725)	Physiology-Guided Complete (N=720)	Characteristic	Culprit-Only (n=725)	Physiology-Guided Complete (N=720)
Procedures			RVD	3.0 (2.5-3.0)	3.0 (2.5-3.0)
Total number	725	961	Diameter stenosis	70 (60-80)	70 (60-80)
Days from index to staged procedures	-	3 (2-4)	Percent diameter ste	enosis	
Radial access	672 (92.7)	911 (94.8)	50-69%	401 (42.2)	390 (41.1)
Number of non-culp	rit vessels per patient	t	70-89%	378 (39.7)	380 (40.1)
One	510 (70.3)	503 (69.9)	90-99%	172 (18.1)	178 (18.8)
Two or more	215 (29.7)	217 (30.1)	Type of physiologica	l assessment	
Location of non-culp			Wire-based hyperemic	-	451 (49.6)
LAD	291 (30.6)	296 (31.2)	Wire-based non hyperemic	-	138 (15.2)
LCX	319 (33.5)	308 (32.5)	Angiography- based index	-	320 (35.2)
RCA	320 (33.6)	310 (32.7)	Functionally		
RI	21 (2.2)	34 (3.6)	significant NCL	-	425 (44.8)

Key Secondary Endpoint

Safety and Secondary Endpoint

	Culprit-Only	Complete		
Outcome	(n=725)	(n=720)		
	no. (%)	no. (%)	Hazard Risk (95% CI)	Р
Death	93 (12.8)	66 (9.2)	0.70 (0.51-0.96)	0.027
Cardiovascular death	56 (7.7)	36 (5)	0.64 (0.42-0.97)	0.034
Non-cardiovascular death	37 (5.1)	30 (4.2)	0.82 (0.50-1.32)	0.40
Stroke	7 (1.0)	12 (1.7)	1.73 (0.68-4.40)	0.25
Myocardial infarction	51 (7.0)	32 (4.4)	0.62 (0.40-0.97)	0.035
ID-revascularization	49 (6.8)	31 (4.3)	0.63 (0.40-0.98)	0.041
Safety endpoint*	148 (20.4)	162 (22.5)	1.11 (0.89-1.37)	0.37

Limitations

- Open label study
- Our results may not apply to:
 - Complete revascularization outside index hospitalization
 - Complete revascularization guided by conventional angiography
 - Patients not treated with biodegradable-polymer sirolimus

eluting stent

Among patients aged 75 years or older with MI and multivessel disease, physiology-guided complete revascularization, as compared to a culprit-only revascularization strategy, reduced

- Composite of death, MI, stroke, or ID-revascularization
- Cardiovascular death or MI